
–1–

3dREMLfit3dREMLfit
AFNIʼs New Approach to Dealing
with Serial Correlation in FMRI

Linear Regression (GLM)

RW CoxRW Cox
Autumn 2008Autumn 2008



–2–

Conclusions First
•  Serial correlation does not appreciably impact the activation magnitudes

(β s) estimated using 3dDeconvolve (= Ordinary Least Squares solution)
•  Group activation maps made from combining these β s using 3dANOVA,
3dLME, etc., are essentially the same using 3dDeconvolve or
3dREMLfit (= Generalized Least Squares solution)
 In other words, there is no need to re-run old group analyses to see

if allowing for serial correlation will change the results
•  Thresholded individual subject activation maps are potentially affected,

depending on the task timing and on the scanner
★  The biggest effect of serial (AKA temporal ) correlation—when this

correlation is significant—is on the estimates of the variance of the
individual subjectsʼ β s

★  If the variance is under-estimated using 3dDeconvolve, then the
individual subject t- and F-statistics will be over-estimated

★  Individual subject variances and statistics are not usually carried
forward to the group analysis level

o  Since inter-subject variance is much larger than intra-subject variance
★  Thus, group results are only marginally affected by serial correlation
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3dDeconvolve and Ordinary Least Squares (OLSQ)
•OLSQ = consistent estimator of FMRI time series fit parameter vector β

★  No matter what the temporal (AKA serial) correlation structure of the noise
o “Consistent” means that if you repeated the identical experiment infinitely many times,

and averaged the estimated value (e.g., β ; variance), result would be the true value
• But OLSQ estimate of time series noise variance is not consistent when

serial correlation is present
★OLSQ variance estimator will usually be biased too small with serial correlation

• Variance estimate is in denominators of formulas for t- and F-statistics
★Result: individual subject t- and F-values will be too large and/or their DOF

parameters will be too large
★Upshot: Significance of individual subject activations will be over-estimated (p-

values will be too small)
★Thresholded individual subject FMRI maps might show too much activation
★Obvious impacts on ROIs generated directly from individual subject activation

maps (e.g., for connectivity analysis)
★However, statistics taking into account serial correlation can be too

conservative, and understate the extent of the “true” regions of activation
o  For this reason, and to avoid selection bias, perhaps it is best to define FMRI-derived

ROIs using a spherical “punch out” around each activation map peak
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A Tiny Amount of Mathematics

•  White noise estimate of variance:
★  N = number of time points; i = time index
★  m = number of fit parameters
★  N – m = degrees of freedom (DOF) = how many equal-variance independent

random values are left after the time series is fit with m regressors
o OLSQ assumption is that each of the N noise values in the data time series are

equal-variance and independent (AKA white noise)
•  If noise values arenʼt independent, then N – m is too large an estimate of

DOF, so variance estimate is too small
•  Two possible solutions are:

1) Adjust variance estimate (and so the t- and F-values) to allow for too few DOF
2) Come up with a different variance estimator that has all N – m DOF possible

o Requires estimating the temporal correlation structure of the noise as well
o Once temporal correlation matrix is known, use Generalized Least Squares (GLSQ;

AKA pre-whitening) to estimate β parameter vector
o GLSQ is consistent and should produce β-values with smaller variance than OLSQ

•  Solution #2 is what 3dREMLfit implements
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Mathematical Model for Serial Correlation
•My choice: ARMA(1,1) = AutoRegressive order 1 + Moving Average order 1

★  Notation: rk = correlation at time lag #k for k =1, 2, … , N-1
•  parameter a = decay rate of the rk as k increases: for FMRI,     0 ≤ a < 1
•  parameter b = affects correlation at lag 1 (r1):                          −1 < b < 1

★

•  For a > 0 and −a < b < 0, ARMA(1,1) noise can be thought of as a sum of
AR(1) noise and white noise, with variance proportions determined by b
★  Why I prefer 2 parameter ARMA(1,1) over easier 1 parameter AR(1) model (b=0)
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Red:  a = 0.7  b =    0.0  =  pure AR(1) model
Green:   a = 0.7  b = +0.6
Blue:  a = 0.7  b = –0.6
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New Program: 3dREMLfit
•  Implements Solution #2: estimate correlation parameters and use GLSQ

★  REML is a (partially nonlinear) method for simultaneously estimating variance +
correlation parameters and estimating regression fit parameters (β s)

★  Each voxel gets a separate estimate of its own correlation parameters (a,b)
o Estimates of a and b can be spatially smoothed before they are used to compute the β s

o Can also input a and b directly and skip their estimation (the slow part), if desired, and
use those values to compute the β s

o Variance estimate uses pre-whitened residuals to keep DOF=N – m
★  Even if correlation decay parameter a was the same for all voxels, relative

amount of white noise (measured by b) mixed in would vary spatially
o  Sample analyses using 1-parameter AR(1) and MA(1) models shown later

•  Inputs to 3dREMLfit
★  Run 3dDeconvolve first to setup .xmat.1D matrix file, GLTs, etc.

o  Donʼt have to let 3dDeconvolve finish analysis: -x1D_stop
o  3dDeconvolve also outputs a command line to run 3dREMLfit with the same

3D+time dataset and the matrix file just created
★  Then, input matrix file and 3D+time dataset to 3dREMLfit

•  Output datasets are structured to be similar to those in 3dDeconvolve
★  It should be easy to adapt scripts that use 3dDeconvolve output files (e.g., for

group analysis) to use the new software
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Rapid Event Related Design (NIH 3 T: JJY)
Individual Maps from 17 Subjects

•  Color map & Threshold: Full F such that p=0.001  (Underlay = TT_N27+tlrc)

REML
F = 3.35
p = 0.001

OLSQ
F = 3.35
p = 0.001

 GIF Animation:
time = subject

Not visible in PDF

Differences
between REML
and OLSQ are
noticeable with
rapid event-
related design
(but activated
regions are very
similar)
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Block Design (15 s blocks: FBIRN-1 SM Task)
1 Individual Map (Subject#106)

 Color=% signal change;  Threshold: p=0.05 (uncorrected)

REML OLSQ
• Very little difference
between OLSQ and
REML, even at so low a
threshold
• Data is markedly less
correlated in time (UNM
Siemens 1.5 T), as shown
by maps of REML-
estimated r1

• Similar data from U Iowa
GE 1.5 T has similarly low
temporal correlation
• BWH & MGH 3 T data has
higher temporal correlation
than FBIRN 1.5 T, but lower
than NIH 3 T —— ??????
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•  Color map & Threshold: Full F such that p=0.001  (Underlay = TT_N27+tlrc)

REML
F = 3.15
p = 0.001

OLSQ
F = 3.15
p = 0.001

 GIF Animation:
time = subject

Block Design (30 s blocks: NIH 3T; JJY)
Individual Maps from 16 Subjects

This is the worst
situation for
OLSQ: stimulus
is at very low
frequencies,
where noise
correlation
affects variance
the most

 GIF Animation:
time = subject

Not visible in PDF
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Results Thus Far
•  Between OLSQ and GLSQ+REML:

★  Individual subject thresholded activation maps may differ very little,
some, or a lot

•  Level of temporal correlation determines how much difference GLSQ
makes to individual subject statistics
★  Amount of temporal correlation seems to depend on magnetic field

strength, other scanner details, pulse sequence, …
★  Effect of temporal correlation also seems to depend on stimulus timing
★  As theory indicates:

o  Temporal correlation means noise variance depends on frequency
o  So amount of noise that interferes with (“looks like”) the signal will

depend on frequencies at which the hemodynamic response is
appreciable

•  Next slides: Group activation maps, GLSQ+REML vs OLSQ
★  2 cases from NIH: Event-related and Block:30s designs
★  Donʼt have enough FBIRN-1 subjects to do a group analysis
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Differences at
group level
are small:
∃ Many false
negatives in
individual
maps when
using more
conservative
GLSQ+REML??

Block Design: Group Results (3dANOVA3)

REML OLSQ

F -test for
Affect
condition

F -test for
Category
condition
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Event-Related Design: Group Results (3dANOVA3)

REML OLSQ

Differences
at group
level are
small:
β s donʼt
depend very
much on REML
vs OLSQ
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Tentative Conclusions
•  For individual subject thresholded activation maps:

★  Use GLSQ/REML estimation, especially for slow block design
experiments at 3+ Tesla

★  Be aware that there may be many false negatives
o  i.e., false acceptances of the null hypothesis
o  am looking into an FDR-like procedure for estimating the false negative rate,

similar to how FDR estimates the false positive rate

•  For group maps using ANOVA (or similar statistics):
★  Differences between OLSQ and GLSQ estimation are small

•  Recommendations:
★  Donʼt need to re-visit group activation conclusions!
★  Use 3dREMLfit as a near drop-in replacment for 3dDeconvolve for

future work

o A little extra CPU time (usually from 1..3 times as long)
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Outline of SPM and FSL Approaches
•  SPM5 and SPM2

★  Estimate fixed ARMA(1,1) (more precisely, AR(1)+white noise) model for all “voxels
of interest” (pass an OLSQ F-test)

o By averaging estimated auto-covariance matrix from OLSQ residuals over
these voxels

o SPM assumes AR parameter a ≈ 0.2, and approximates ARMA(1,1)
correlations via linear Taylor series, to make correlation parameter estimation
easier to program

★  Use GLSQ (same for each voxel) to solve for β s

o SPM99: Use OLSQ and adjusts DOF downwards to allow for serial correlation
•  FSL and FMRIstat (similar, but differ in important details at several points)

★Use OLSQ to get first-pass residuals; use these to estimate each voxelʼs auto-
correlation matrix; smooth these matrices spatially (FSL & FMRIstat vary here)

★Estimate AR(1) parameter for each voxel separately from smoothed matrices
★Use GLSQ (different for each voxel) to solve for β s

•  All these programs use a non-REML method to estimate serial correlation
parameter(s) from the OLSQ residual auto-correlation matrix, and then
adjust these estimates to reduce the bias thus introduced
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Using 3dREMLfit - 1
•  Step 1: run 3dDeconvolve as normal, setting up timing, GLTs
•   3dDeconvolve ... -bucket Adecon -x1D_stop
Screen outputScreen output:
++ Wrote matrix values to file Adecon.xmat.1D
++ ========= Things you can do with the matrix file =========
++ (a) Linear regression with ARMA(1,1) modeling of serial
correlation:

3dREMLfit -matrix Adecon.xmat.1D -input ss17.AllRuns.norm+orig
-mask ss17_mask+orig -Rbeta Adecon_beta_REML -fout -Rbuck
Adecon_REML -Rvar Adecon_REMLvar

++ N.B.: 3dREMLfit command above written to file Adecon.REML_cmd
++ (b) Visualization/analysis of the matrix via ExamineXmat.R
++ (c) Synthesis of sub-model datasets using 3dSynthesize
++ ==========================================================
++ 3dDeconvolve exits: -x1D_stop option was given

filename re-used for 3dREMLfit command
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Using 3dREMLfit - 2
•  Step 2: run 3dREMLfit ; perhaps adding options to the command line:

★ -addbase : add extra baseline columns to the regression matrix
★ -slibase : add extra baseline columns to the regression matrix, on

a per slice basis = intended to aid in removal of physiological noise
★   -gltsym    : add extra GLTs (beyond those from 3dDeconvolve)
★ -usetemp : -slibase can require a lot of memory

o  Generates REML matrices for many (a,b) cases for each slice
o  This option writes & reads temporary matrices to disk to reduce RAM usage

➥  -verb : outputs information about memory usage as program runs
★ -Obuck : output OLSQ bucket dataset (etc.)

o  -Rbuck   : output GLSQ bucket (stimulus βs and statistics)
o  -Rbeta   : output GLSQ (all the βs and only the βs; no statistics)
o  -Rfitts : output GLSQ fitted model
o  -Rvar    : output GLSQ (a,b) parameters and variance estimate (per voxel)

★ -NEGcor : allow negative correlations in the estimation
o Probably not really needed for FMRI, but option is there just in case
o There are more options to control estimation of the (a,b) parameters

•  Of course: read the output of 3dREMLfit -help
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Potential Add-ons to 3dREMLfit
•  Add option to use this program to afni_proc.py super-script
•  Add -iresp and -sresp options
•  Output variances for βs

★e.g., to be carried to the group analysis level?  Need to implement a new
approach for this option to be useful.

•  Matrix error checking when -addbase or -slibase is used
★  In case the bumbling user puts in a collinear column
★  Program cannot handle an all-zero column (unlike 3dDeconvolve)

•  Re-run with extra GLTs to be added to existing bucket
★  Or at least have a GLT-only output option: -Rglt ??

•  Finish work with R Birnʼs physiological noise regressors and integrate
these into time series analysis via -slibase
•  -jobs option to spread load across multiple CPUs

★  Especially loop where parameters (a,b) are estimated: the slowest part
•  … ???

Next: more details on ARMA vs AR vs MA 
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Serial Correlation Model & Notation: ARMA(1,1)
•  Denote noise value at time index i by ξi for i=0..N–1
•  Variance is average (AKA expected) value of noise squared:

★                       where E [•] means “expected value of •”
•  Covariance is similar to variance, measured between different time points:

★                           which depends on time difference between time points i and j
•  Correlation is covariance with variance factored out

★                             (with r0=1)
o N.B.: rk measures predictability of noise value at time j+k given value at time j

•  For entire time series, express variance/correlation as a matrix
★

•  Need to have a simplified model for R (i.e., the rk for k =1, 2, … , N-1)
★  Otherwise, have too many parameters to estimate
★  My choice: ARMA(1,1) = AutoRegressive order 1 + Moving Average order 1
★  parameter a = decay rate of the rk as k increases: for FMRI,     0 ≤ a < 1
★  parameter b = determines correlation at lag 1 (r1):                   −1 < b < 1

o

★  For a > 0 and −a < b < 0, ARMA(1,1) noise can be thought of as a sum of AR(1)
noise and white noise, with variance proportions determined by b

o This feature is one reason I prefer ARMA(1,1) as a noise correlation model over AR(1)
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AR(1): a  vs.  MA(1): b  vs.  ARMA(1,1): a & b
•  Check the effectiveness of GLSQ pre-whitening solution by examining

pre-whitened residuals
★  Pre-whitening: applying a linear transformation to the time series data to de-

correlate the noise
o Symbolically, R−1/2 where R is the correlation matrix

•  After pre-whitening, residuals (difference between data and fitted time series)
should be (mostly) uncorrelated
•  Power spectrum of white noise is flat

★  Power spectrum = expected value of absolute value of Fourier transform,
averaged over an infinity of repeated identical experiments

•  Visually inspect graph of abs[FFT(pre-whitened residuals)]
★  Should be flattish, with random excursions

o This is noise, after all, and we donʼt have an infinity of data over which to average
•  Next 4 slides:

★  Graphs of “spectrum” for OLSQ and GLSQ using ARMA(1,1), AR(1), and
MA(1) correlation models (generated using interactive AFNI, of course)

★  For 3 strongly “active” voxels in one subject (block design: 30 s blocks; NIH 3T)
★  Then the single subject activation maps for 6 types of analysis
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Spectrum (slightly smoothed absFFT) of Residuals
OLSQ

ARMA: a=0.6 b=0.1

AR: a=0.6 b=0

MA: a=0 b=0.5

In this voxel:
• OLSQ:
definitely not
“white”
• GLSQ:
“white-ish” for
all 3
correlation
models

Block:30s



–21–

Spectrum of Residuals
OLSQIn this voxel:

• OLSQ: not
“white” but
not very
“colored”
either
• GLSQ: All
methods
about the
same in fixing
up what little
needs to be
fixed

Block:30s

ARMA: a=0.8 b= –0.7

AR: a=0.4 b=0

MA: a=0 b=0.3
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Spectrum of Residuals
OLSQIn this voxel:

• OLSQ:
definitely not
“white”
• GLSQ:
ARMA
appears a
little “whiter”
than either
AR or MA
alone

Block:30s

ARMA: a=0.4 b=0.7

AR: a=0.8 b=0

MA: a=0 b=0.8
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6 Types of Analysis

OLSQ MA(1)

AR(1)
ARMA(1,1)

Threshold=F
Color=βtask#1

MA(1) fixed b=0.37

AR(1) fixed a=0.42

Block:30s
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Conclusions from Previous Slides
•  It is possible to find voxels where pre-whitening of different types (AR-

only or MA-only or ARMA) is “optimal”
★  And voxels where pre-whitening makes little difference

•  For many (most?) voxels, the pre-whitening details donʼt make a lot of
difference in the statistics
★  As long as something is done that is about right
★  e.g., Using fixed AR(1) or MA(1) single parameter method was still OK-ish for

single subject maps
o A few more extraneous small blobs
o But fewer than pure OLSQ solution statistics

•  Map of r1=correlation at neighboring TRs,
   as output by REML and ARMA(1,1) fit

★  Same slice as previous slides (NIH 3 T data)
★  In general, cortical gray matter shows more
   correlation, but this result is not universal

0.0

0.7
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Mathematics and Implementation
•  Available in PDF (scanned from hand-written pages) for the truly devoted

★  File 3dREMLfit_mathnotes.pdf
•  Outline of REML estimation methodology

★  What is REML and why do we care?
•  Matrix algebra for efficient solution of the many linear systems that must

be solved for each voxel
★  Sparse matrix factorizations, multiplications, and solvers

•  How ARMA(1,1) parameters are estimated in 3dREMLfit
★  Optimizing REML log-likelihood function over a discrete grid of (a,b)

values, using 2D binary search
★  Must solve a GLSQ problem for each (a,b) tested, for each voxel

•  How statistics are implemented as GLTs
★  Testing null hypothesis Gβ=0 for arbitrary matrix G

•  Derivation of ARMA(1,1) formulas
★  For completeness, and because we all love equations


